

 Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

Swinburne Research Bank
http://researchbank.swinburne.edu.au

Grunske, L., Geiger, L., & Lawley, M. (2005). A graphical specification of model

transformations with triple graph grammars.

Originally published in A. Hartman, & D. Kreische (eds.). Proceedings of the 1st
European Conference on Model Driven Architecture: Foundations and

Applications, (ECMDA-FA), Nuremberg, Germany, 07–10 November 2005.
Lecture notes in computer science (Vol. 3748, pp. 284–298). Berlin: Springer.

 Available from: http://dx.doi.org/10.1007/11581741_21

Copyright © Springer-Verlag Berlin Heidelberg 2005.

This is the author’s version of the work, posted here with the permission of the
publisher for your personal use. No further distribution is permitted. You may also be
able to access the published version from your library. The definitive version is
available at http://www.springerlink.com/.

http://dx.doi.org/10.1007/11581741_21
http://www.springerlink.com/

A Graphical Specification of Model
Transformations with Triple Graph Grammars

Lars Grunske1, Leif Geiger2, and Michael Lawley3

1 School of Information Technology and Electrical Engineering,
University of Queensland, Brisbane, QLD 4072, Room 72-458 IT Building

grunske@itee.uq.edu.au

http://www.itee.uq.edu.au/
2 University of Kassel, Software Engineering Research Group,
Department of Computer Science and Electrical Engineering,

Wilhelmshöher Allee 73, 34121 Kassel, Germany
leif.geiger@uni-kassel.de

http://www.se.eecs.uni-kassel.de/se/
3 CRC for Enterprise Distributed Systems Technology (DSTC)??,

University of Queensland,
Brisbane, QLD 4072, Australia

michael@lawley.id.au

http://www.dstc.edu.au/

Abstract. Models and model transformations are the core concepts of
OMG’s MDATM approach. Within this approach, most models are de-
rived from the MOF and have a graph-based nature. In contrast, most
of the current model transformations are specified textually. To enable
a graphical specification of model transformation rules, this paper pro-
poses to use triple graph grammars as declarative specification formal-
ism. These triple graph grammars can be specified within the FUJABA
tool and we argue that these rules can be more easily specified and they
become more understandable and maintainable. To show the practicabil-
ity of our approach, we present how to generate Tefkat rules from triple
graph grammar rules, which helps to integrate triple graph grammars
with a state of a art model transformation tool and shows the expres-
siveness of the concept.

1 Introduction

Model Driven Engineering (MDE) is a software engineering principle that pro-
motes the use of models and transformations as primary development artifacts.
To practically apply this principle, the Object Management Group (OMG) has
proposed the MDATM [1] as a set of standards for integrating MDE tools. The
MDATM approach separates the specification of systems from the implemen-
tation of these systems. For this reason two basic model types are introduced,
?? The work reported in this paper has been funded in part by the Co-operative Re-

search Centre for Enterprise Distributed Systems Technology (DSTC) through the
Australian Federal Government’s CRC Programme.

2 Grunske, Geiger, Lawley

Platform Independent Models (PIM’s) and Platform Specific Models (PSM’s)
using specific implementation platforms. PIM’s can be specified in an abstract
style without thinking about platform specific details. If all necessary PIM’s are
specified, they should be automatically mapped to a platform specific model by
adding the platform specific details. To allow this mapping, model transforma-
tions are necessary.

The need for standardization of model transformations as well as the gener-
ation of views and the definition of queries lead to the MOF 2.0 Query/ Views/
Transformations Request for Proposals (RFP) [2] from the OMG. For this RFP
the OMG initially received eight proposals of varying degrees of completeness
which are reviewed and assessed in [3]. A final revised, merged submission sup-
ported by all original submitters is expected to be voted for adoption at the
June 2005 OMG meeting in Boston. This submission supports several flavours
of transformation specification allowing for both declarative and procedural spec-
ifications.

One important aspect we noticed when reviewing the revised submissions for
the RFP is that most transformation languages are specified textually. This con-
flicts with the graph-based nature of most of the current MOF 2.0 models (e.g.
UML 2.0 models). A graph-based transformation language would be more ap-
propriate for specifying and applying model transformations. Having made this
observation, we propose to use graph transformations rules (specifically triple
graph transformation rules) and graph transformation systems as an extension
to the current model transformation languages. These graph transformation rules
are a straightforward extension of string or term rewriting rules, which were in-
troduced in the seventies [4] and are currently applied in various domains [5] to
transform or rewrite graph-based structures. However, normal graph transfor-
mation rules and systems are only suitable to operate on one particular graph.
Thus, they are only suited to describe intra-model transformation, as they are
needed to specify quality-improving refactorings [6–8]. To operate on two differ-
ent graphs with two different graph schemata an extension called triple graph
grammars [9] is suitable. These triple graph grammars and their rules are the
theoretical foundation of this paper and we want to show their suitability for
describing complex model-to-model transformations. Especially, we argue that
triple graph grammars provide the following benefits, which are useful for the
specification and application of model-to-model transformations [10]:

– Triple graph grammars allow incremental change propagations between two
models A and B, if a model transformation system with triple graph gram-
mar rules is applied once to transform a model A to a model B and the
correspondence graph is generated. This means you can create tools that
update a model if the other has been changed. [11, 9] This change propa-
gation is also bidirectional and is especially important for iterative software
engineering processes where a model evolves continuously.

– Triple graph grammars can be used to check the consistency between two
models.

Model Transformations with Triple Graph Grammars 3

– Triple graph grammars can be applied to all graph-based data structures and
models, not only to tree-based ones. This also includes hierarchical graph-
based data structures [12–14], which we think is imported to model trans-
formations between two MOF 2.0-compliant models.

The rest of the paper is structured as follows: Section 2 introduces the ba-
sic concepts of graph-based structures and graph transformations in general.
Thereafter, Section 3 reviews the concepts of triple graph grammars and shows
how triple graph grammar rules can be used to specify model-to-model trans-
formations. In Section 4, the practical applicability of triple graph grammars is
presented with the well-known example of the transformation from an object-
oriented class diagram model into a relational database model. Section 5 presents
an implementation of triple graph grammars within the FUJABA tool and de-
scribes how FUJABA could be used to generate textually specified model trans-
formation rules (e.g. Tefkat rules). Before concluding, Section 6 discusses the
limitation of triple graph grammars and sets up directions for future work to
extend the current model-to-model transformation languages successfully.

2 Preliminaries

This section introduces the basic concepts of graph-based structures and the
fundamental graph transformation theory in an informal and intuitive way. In
addition, this section presents an overview about useful graph transformation
techniques and extensions that are needed to specify model transformations
within the MDATM approach.

2.1 Directed Typed Graphs and Graph Morphisms

We choose directed typed graphs as the basic structure, because they are well
suited to specifying different types of models, especially MOF-based models [15].
These directed typed graphs contain nodes and edges that are instances of node
and edge types. The instance relation between the nodes and edges and their
types is similar to the relation between objects and classes in object-oriented
software engineering. Due to this, a node or edge type can contain a set of ap-
plication specific attributes and operations. To model the graph-based structure
each edge is associated with a source and a target node. Formally, a typed graph
can be defined as follows:

Definition 1: (Directed Typed Graphs) Let LV be a set of node types and LE

be a set of edge types; then a directed typed graph G from the possible set of
graphs G over LV and LE is characterized by the tuple 〈V, E, source, target,
type〉, with two finite sets V and E of nodes (or vertices) and edges, a function
type composed of the two functions typeV : V → LV and typeE : E → LE which
assigns a type to each edge and node and two functions source : E → V and
target : E → V that assign to each edge a source and a target node.

4 Grunske, Geiger, Lawley

Another preliminary for the definition of graph transformation systems are graph
morphisms. These graph morphisms are structure and type-preserving mappings
between two graphs that can be defined as follows:

Definition 2: (Graph Morphism) Let G = 〈V,E, source, target, type〉 and
G′ = 〈V ′, E′, source′, target′, type′〉 be two graphs; then a graph morphism
m : G → G′ consists of a pair of mappings 〈mV , mE〉, with mV : V → V ′

and mE : E → E′, which satisfy the following conditions (type and structure-
preserving):

– ∀ e ∈ E : type′(mE(e)) = type(e)
– ∀ v ∈ V : type′(mV (v)) = type(v)
– ∀ e ∈ E : source′(mE(e)) = mV (source(e))
– ∀ e ∈ E : target′(mE(e)) = mV (target(e))

If both mappings mV : V → V ′ and mE : E → E′ are injective (surjective,
bijective) then the mapping m : G → G′ is injective (surjective, bijective).

Graph Variants Besides the introduced directed typed graphs, several other
variants and extensions gain attention in the graph transformation community.
One basic variant uses undirected edges. These undirected edges can be modeled
in a directed graph with two contrary edges for each undirected edge. Another
variant are hypergraphs[16], where each (hyper) edge is associated with a se-
quence of source and target node. That means, these edges can have an arbi-
trary number of source and target nodes. For the construction of hierarchical
models, hierarchical graphs are important. These hierarchical graphs model the
hierarchical structure either by (hyper)edge [12] or node refinement [17].

2.2 Graph Transformation and Graph Transformation Systems

Basic Principles Graph transformation systems make use of graph rewriting
techniques to manipulate graphs. A graph transformation system is defined with
a set of graph production rules, where a production rule consists of a left-hand
side (LHS) graph and a right-hand side (RHS) graph. Such rules are the graph
equivalent of term rewriting rules, i.e., intuitively, if the LHS graph is matched
in the source graph, it is replaced by the RHS graph. Intuitively, a graph trans-
formation rule can be defined as follows:

Definition 3: (Graph Transformation Rule) A graph transformation rule p =
〈GLHS , GI , GRHS ,ml,mr〉 consists of three directed typed graphs GLHS , GI

and GRHS , which are called left-hand side graph, interface graph and right-hand
side graph. The interface graph GI is just an auxiliary graph. The morphisms
ml : GI → GLHS and mr : GI → GRHS are used to describe the correspondence
between these graphs and map the elements of the interface graph to either the
left-hand side or the right-hand side graph.

For the application of a graph transformation rule to an application graph GAPP

the following simplified algorithm can be used:

Model Transformations with Triple Graph Grammars 5

1. Identify the left-hand side GLHS within the application graph GAPP . For
this, it is necessary to find a total graph morphism m : GLHS→GAPP that
matches the left-hand side GLHS in the application graph GAPP .

2. Delete all corresponding graph elements, w.r.t. m, in the application graph
GAPP that are part of the left-hand side GLHS and are not part of the
interface graph GI .

3. Create a graph element in the application graph GAPP for each graph ele-
ment that is part of the right-hand side GRHS and is not part of the interface
graph GI . Connect or glue these added graph elements to the rest of the ap-
plication graph GAPP .

For a formal description of the rule application formalisms, we refer to [18, 19],
where the formal foundations of the single pushout (SPO) and double pushout
(DPO) approach are reviewed. Currently these approaches have the most impact
in the graph transformation community [5, 15, 8].

Application Conditions In complex graph transformation systems it is often
necessary to restrict the application of single rules. Therefore, in [20] the concept
of positive and negative application conditions (PACs and NACs) is introduced.
These application conditions are formally graphs that define a required context
(PACs; e.g. the presence of nodes or edges) or a forbidden context (NACs; e.g
the absence of nodes or edges). The fulfillment of these application conditions
must be checked before the rule is applied. Consequently, the algorithm in the
previous Section must be extended by adding another step after the first one,
which checks the application conditions. In this paper, we use crossed out nodes
to visualize nodes belonging to the negative application condition.

Specification of Graph Transformation Rules In traditional approaches
for specification of graph transformation rules the right hand side and the left
hand side of a rule are drawn separately [19, 18]. Throughout this paper the
approach of the Fujaba Tool [21], that combines both sides, is used. Fujaba uses
UML collaboration diagrams to model graph transformations. Nodes become
objects and edges become links between objects. Objects and links that have
no stereotypes appear on both sides of the graph transformation rule. Objects
and links marked with the ¿destroyÀ stereotype appear only on the left hand
side, i.e. they are deleted. The stereotype ¿createÀ marks elements only used
on the right hand side, i.e. such elements are created. Fujaba uses programmed
graph transformation rules. This means a control structure can be specified
that manages the order of the execution of transformation rules. Such control
structure is modeled using UML activity diagrams. The transformation rules
are then embedded into the activities. Fujaba makes use of typed graphs. In
the graph transformations, the type is specified after the object’s name, and
separated by a colon. More elaborate elements of graph transformations like
negative application conditions, multi objects and non-injective matching are
also supported by the Fujaba tool. All of these features will be needed for the
effective specification of model transformation rules.

Figure 1 shows a graph transformation rule in Fujaba. The rule consists only

6 Grunske, Geiger, Lawley

of one transformation that deletes every column in a table that has the same
name as another column. To achieve this, the transformation tries to match an
object c1 of type Column which has a col link to a Table object t. This object
must itself have a col link to another object of class Column. If this column
has the same attribute value for
its attribute name as the object
c1, the matching can be applied.
If a matching is found, the col-
umn c2 and its col link will be
destroyed. Note, that the activ-
ity has a doubled border. Such
an activity, a so-called for-each
activity, is applied as long as a
matching is found. Thus, the rule
deletes every duplicated column
in every table. Fig. 1: Graph transformation ”Fujaba-style”

3 Triple Graph Grammars

In this section we introduce the concept of triple graph grammars (TGG) and
describe their suitability to extend current model transformation systems. There-
after, we show how triple graph grammars can be specified within the Fujaba
tool and how forward and backward transformations can be derived from these
triple graph grammar rules.

3.1 Introduction

Triple graph grammars are a straightforward extension of pair grammars and
pair grammar rules that were introduced by Pratt [17] in the early seventies.
These pair grammars are used to specify graph-to-string translations. By this
means, a pair grammar rule rewrites two models: a source graph and a target
string. Thus, it contains a pair of production rules (a graph and a string produc-
tion rule), which modify simultaneously the two participating models. Because
of this, pair grammars are well suited to specify transformations between graphs
and strings. If the string production rule is substituted by a graph production
rule, these pair grammars can be also used for graph-to-graph translations.

Triple graph grammars, as introduced in the early nineties [22] are used for
graph-to-graph translations and data integration. Each triple graph grammar
rule contains three graph productions; one operates on a source graph, one on
the target graph and one on a correspondence graph. The correspondence graph
describes a graph-to-graph mapping that relates elements of the source graph
to elements of the target graph. Based on this mapping, incremental change
propagations, that update the target graph if an element in the source graph is
changed, are possible. Formally, triple graph grammar rules can be defined as
follows [22]:

Model Transformations with Triple Graph Grammars 7

Definition 4: (Triple Graph Transformation Rule) A triple graph transforma-
tion rule tgg = 〈pleft, pright, pmap〉 consists of three graph transformation rules
pleft, pright and pmap where pleft transforms the source model, pright transforms
the target model and pmap transforms a relation model that maps source to
target elements. All three graph production are applied simultaneously.

3.2 Specification

To specify a complex triple graph grammar rule all three graph grammar rules
should be specified in one rule diagram. For the specification of each single rule
we use the Fujaba-style and separate the three rules within the rule diagram.
Due to this separation a user can identify to which side the element belongs.

Fig. 2. Example of a TGG rule class-to-table in FUJABA

Figure 2 shows a transformation rule that contains seven objects; two source
model objects, three target model objects and two correspondence model objects.
The objects from the source model are drawn left, the objects of the target model
are drawn right and the objects of the correspondence model are drawn in the
middle of the rule diagram. Additionally, they are marked with the stereotypes
¿leftÀ, ¿mapÀ or ¿rightÀ. The rule shown in the figure demonstrates a
mapping between classes in a class diagram and tables in a relational database.
The precondition of this rule is drawn in the top of the diagram. This means, to
apply this rule there must already exist a class diagram which is mapped via a
Mapping node to a relational database. The elements which have to be related
are drawn green with a ¿createÀ stereotype. This means, an object of the type
Class is mapped to an object of the type Table which has a link to a key object
and vice versa. Attribute conditions are modeled as constraints. For example,
the id of a class is stored as name of the table’s key.

A triple graph grammar rule enable the generation of three transformation
rules [9]: the forward rule, the reverse rule and a relation rule that checks the con-
sistency of both models. The forward rule is created by removing the ¿createÀ
stereotype from all elements which belongs to the source (¿leftÀ) model. The
reverse rule is created by removing the ¿createÀ stereotype from all elements
which belongs to the target (¿rightÀ) model. The last rule, the relation rule, is

8 Grunske, Geiger, Lawley

Fig. 3. Forward rule derived from the TGG-rule class-to-table

derived by removing the ¿createÀ stereotype from all elements that does not
belong to the correspondence (¿mapÀ) model.

Fig. 4. Reverse rule derived from the TGG-rule class-to-table

Figure 3 shows the derived forward rule. If a mapping from a class diagram to
a relational database exists and if the class diagram contains a class, a new table
and a new key are created and its attributes are set accordingly to the TGG
rule. These newly created objects are marked as being mapped to the class using
a new mapping node.

Figure 4 shows the reverse rule, which will create a class for every table in
the relational model. The matching and creation of objects is done in the same
manner as is done for the forward rule.

The last rule created is the relation rule shown in Figure 5. This rule needs
a class diagram and a database and tries to relate them. This will result in a
consistency check between these two models. Therefore, the only objects created
in this rule are the mapping nodes.

Model Transformations with Triple Graph Grammars 9

Fig. 5. Relation rule derived from the TGG-rule class-to-table

The rule in Figure 5 searches for a class diagram that has already been
mapped to a relational database. If the class diagram contains a class which
can be related to a table as specified in the rule, a new mapping is created. If
a mapping can be created for all classes and for all tables the two models are
consistent.

4 Example

To show the practical applicability of triple graph grammars in the context of
model transformations we use the well-known example of the transformation
from an object-oriented class model to a relational database model. This trans-
formation is required if an application needs to store a set of objects persistently
in a database. A text-based realisation of this example can be found in several
QVT-proposals [23, 24]. A graphical specification of the transformation rules of
this example can be found in [25].

The basic meta-models, the object-oriented class model and the relational
database model, for this transformation are presented in Figure 6. To keep the
transformations simple the object-oriented model is cut down in the following
aspects:

– A class can contain only attributes and no methods, because methods don’t
need to be stored persistently.

– Only 1:1 and 1:n associations are considered. These associations are rep-
resented by attributes that have classes as types. For a modelling of m:n
associations a new meta class Association need to be introduced, that has a
source and a target association to the meta-class Class.

– In some examples, the meta-class Classifier or Class has a Boolean attribute
ispersistent that is used to mark all objects that need to be stored in the
database. For simplicity in our transformation we transform the complete
object-oriented model into a relational model.

10 Grunske, Geiger, Lawley

Fig. 6. Meta-models including the mapping relation

The effect of these simplifications will be described and discussed in the
following, when we describe the transformations in detail.

To transform an instance of the object-oriented meta-model into the rela-
tional model the following natural language rules(requirements/laws) are used:

– Classes correspond to Tables that have a unique Key. This Key is identical
to the id of the Class.

– Types in the relational model correspond to simple Datatypes in the object-
oriented model.

– Attributes are stored in Columns, where each Column is owned by the Table
of the corresponding Class.

To implement the transformations and consistency checks between the object-
oriented class model and the relational database model a set of triple graph
grammar rules must be created for each law. The triple graph grammar rule for
the first law, the mapping from classes to tables, has already been discussed in
Section 3.2. The rule for the second law is very similar. This rule relates each
Datatype in the object-oriented model and each Type in the relational model the
same way as it is done for the first law.

To store the attributes in columns and vice versa, as requested in the third
law, we need to distinguish between attributes of a simple type and attributes
that are classes. Due to this reason, we need to specify two different TGG-rules
(cp. Figure 7). To get an impression what these rules do, we now have a look
at the forward rules, which can be generated from the two TGG-rules. The first
rule searches for all Attributes of a Class that are typed by a DataType. It then
creates a Column for each Attribute and assigns the Column to the Table of the
Class and to the Type of the corresponding Attribute. The second rule tries to
match all Attributes of a Class that refer to another Class. If this rule finds such
a match, it creates a new Column and assigns it to the Table of the Class to
which the Attribute belongs. To set the correct Type of the Attribute the Table

Model Transformations with Triple Graph Grammars 11

Fig. 7. TGG-rules for attributes and columns

of the Class is identified with the mapping relation and the association refer to
is set to the Key of this Table. 4 5

5 Implementation

For specifying triple graph grammar rules we use FUJABA’s [21] TGG Plug-
in, which provides all necessary triple graph grammar concepts for specifying
model transformations. Additional, the TGG-Plug-in is open source and easily
extendable.
4 Note that before these rules can be applied it is necessary to apply the rules that

transform Classes and Datatypes. If these rules are not previously applied, the map-
ping relations are missing and the LHS of the TGG-rule can’t be matched. This
leads to an implicit specification of the ordering of the rules.

5 With the described transformations of attributes that are typed by classes, all 1:n and
1:1 associations can be transformed. To transform the m:n associations an additional
rule is necessary. This rule creates a new table for all m:n associations and stores
the links to the corresponding classes as foreign keys in this table.

12 Grunske, Geiger, Lawley

To execute model transformations, that are specified as TGG rules, two op-
tions are provided by the FUJABA tool. As a first option, story diagrams could
be generated from TGG rules. These story diagrams can be used to generate
Java code, which enables a so called in-memory model transformation [26].

Based on this approach we have implemented a second alternative, which gen-
erates rules that can be used in the Tefkat tool [27]. Tefkat is an implementation
of the transformation language proposed by DSTC et al [23] in their response to
the OMG’s QVT RFP. It is a declarative, logic-based language with a fixpoint
semantics. It supports single-direction transformation specifications from one or
more source models to one or more target models. The transformation specifica-
tions are constructive meaning that they specify the construction of the target
model(s). There is currently no support for in-place update of models.

The Tefkat implementation is based on the Eclipse Modeling Framework
(EMF) [28] and supports transforming native Ecore models as well as those
based on MOF2, UML2, and XMLSchema. It is usable in both standalone form
and as an Eclipse plugin with a source-level debugger.

To generate Tefkat rules the TGG plug-in identifies for each object, link and
constraint its position (e.g. ¿leftÀ, ¿mapÀ and ¿rightÀ) and its modifier
(e.g.¿createÀ and¿deleteÀ) and fills based on this information a template for
the forward, backward and consistency checking rule. The complete algorithm
follows the basic concepts given in Section 3. As an example from the TGG rule
2 the Tefkat rule presented in Fig 8 will be generated.

RULE c l a s s−to−tableForward (c l a s s , cd , rdb , key , t ab l e)
FORALL Class c l a s s , ClassDiagram cd , Database rdb
WHERE cd2rcdb LINKS cd=cd , db=rdb

AND cd . conta in s=c l a s s
MAKE Key key , Table t ab l e

SET key . key=table ,
rdb . conta in s=table ,
key . name=c l a s s . id ,
t ab l e . name=c l a s s . name

LINKING c2t
WITH tab l e=table , c l a s s=c l a s s , key=key ;

Fig. 8. Forward Rule in Tefkat

6 Discussion

With the transformation example given in Section 4 we have shown that triple
graph grammars and triple graph grammar rules are suitable to specify simple
inter-model-transformations. However, we still see some problems in the appli-
cation of these triple graph transformation rules to real world transformation
problems. First, the success of all transformation languages within the MDA de-
pends mostly on the performance of the application of the transformation rules.

Model Transformations with Triple Graph Grammars 13

It is unacceptable to wait several hours until all rules are applied. The most time
consuming task within the application of triple graph grammar rules, is to find
all matches of the left hand side (LHS) in an application graph. Consequently,
it is necessary to optimise the rule matching algorithms. This can be done e.g.
by specifying or identifying an optimal order in which the objects should be
matched.

Another important point is an optimal support for an easy specification of
transformation rules. This includes a tool that guides the user within the spec-
ification without restricting them too much. At this point Fujaba helps a lot.
However, it can still be improved. The other aspects that comes to mind when
talking about the easy specification of a rule, is a support to reuse and to adapt
existing rules. This includes extending and superseding rules as described in [23].
To our current knowledge, there is no theoretical concept for applying inheri-
tance to graph grammar rules.

Finally, current triple graph grammar rules are only suited to model trans-
formations between one source and one target model. To solve this problem
in [29], an extension, called MDI-rules, is presented, which allows transformation
between N source models and M target models. To provide this possibility, for
each additional source or target model an additional graph production rule must
be specified. This means, that a 1-to-2 transformation must be specified with
quadruple graph grammar rules. However, in most cases these N-to-M transfor-
mations can be also specified with a set of 1-to-1 transformation rules, except
from the case of model merging (N-to-1), where not only tree-based structures
are involved [30].

7 Conclusion and Future Work

This paper describes a possible extension for the current transformation language
within the MDATM approach. This extension is based on triple graph grammars
and triple graph grammar rules, which provide a deep theoretical concept for
data integration [9] between different graph-based structures. Thus, they can
easily be adapted for model-to-model transformations [26]. An important fea-
ture of triple graph grammar rules is the implicit creation of a correspondence
graph between the two models. This allows incremental change propagation in
case one model evolves. The practical applicability of triple graph grammars for
model-to-model transformations is presented with the well-known example of
the transformation from an object-oriented class model to a relational database
model.

The main benefit of triple graph grammars is the ability to graphically spec-
ify transformation rules. However, it needs to be proven that these graphical
transformation rules are really easier to specify and to maintain. One possibility
to prove this would be with empirical studies. We are currently planning such
study with student teams that need to specify and maintain (implement new
requirements) a complex model-to-model transformation system.

14 Grunske, Geiger, Lawley

Besides the benefits of triple graph grammars, we have also discussed (cp.
Section 6) the existing problems with applying TGG-rules in real-world model
transformation systems. Thereby, especially the extension of the theoretical con-
cepts to allow inheritance and M-to-N transformations with TGG-rules seem to
be interesting research topics. With these extensions and optimized algorithms
for matching the right hand side of a rule, we think that triple graph gram-
mars can become a useful concept for specifying and applying model-to-model
transformations within the model driven engineering paradigm.

References

1. OMG (The Object Managemant Group): MDA specifications, http://
www.omg.org/ mda/ specs.htm. (2002-2004)

2. OMG (The Object Managemant Group): OMG MOF 2.0 query, views,
transformations request for proposals (QVT RFP), http://www.omg.org/ tech-
process/ meetings/ schedule/ MOF 2.0 Query View Transf.RFP.html or
http://www.omg.org/docs/ad/02-04-10.pdf (2002)

3. Gardner, T., Griffin, C., Koehler, J., Hauser, R.: A review of OMG MOF 2.0 Query
/ Views / Transformations Submissions and Recommendations towards the final
Standard, http://www.omg.org/docs/ad/03-08-02.pdf (2003)

4. Ehrig, H., Pfender, M., Schneider, H.J.: Graph grammars: An algebraic approach.
In Book, R.V., ed.: Proceedings of the 14th Annual Symposium on Switching and
Automata Theory, University of Iowa, IEEE Computer Society Press (1973) 167–
180

5. Andries, M., Engels, G., Habel, A., Hoffmann, B., Kreowski, H.J., Kuske, K.,
Plump, D., Schürr, A., Taentzer, T.: Graph transformation for specification and
programming. Science of Computer Programming 34 (1999) 1–54

6. Fowler, M.: Refactoring - Improving the Design of Existing Code. Addison Wesley
(1999)

7. Van Gorp, P., Van Eetvelde, N., Janssens, D.: Implementing refactorings as graph
rewrite rules on a platform independent meta model. In: Proceedings of Fujaba
Days 2003. (2003)

8. Mens, T., Demeyer, S., Janssens, D.: Formalising behaviour preserving program
transformations. In: Graph Transformation. Volume 2505 of Lecture Notes in
Computer Science., Springer-Verlag (2002) 286–301

9. Schürr, A., Winter, A., Zündorf, A.: Graph grammar engineering with PROGRES.
In: Proceedings 5th European Software Engineering Conference ESEC. Volume
LNCS 989., Springer (1995) 219–234

10. Grunske, L., Geiger, L., Zündorf, A., VanEetvelde, N., VanGorp, P., Varró, D.:
Using graph transformation for practical model driven software engineering. In:
Model-driven Software Development - Volume II of Research and Practice in Soft-
ware Engineering, edited by Sami Beydeda and Volker Gruhn, ISBN: 3-540-25613-
X. (2005) 91–119

11. Becker, S., Haase, T., Westfechtel, B., Wilhelms, J.: Integration tools supporting
cooperative development processes in chemical engineering. In: Proceedings Inte-
grated Design and Process Technology (IDPT-2002), Pasadena, California (2002)

12. Drewes, F., Hoffmann, B., Plump, D.: Hierarchical graph transformation. J. Com-
put. Syst. Sci. 64 (2002) 249–283

Model Transformations with Triple Graph Grammars 15

13. Grunske, L.: Automated software architecture evolution with hypergraph trans-
formation. In: 7th International Conference Software Engineering and Application
(SEA 03), Marina del Ray, CA, USA (2003) 613–621

14. Grunske, L.: Formalizing architectural refactorings as graph transformation sys-
tems. In: Sixth International Conference on Software Engineering, Artificial In-
telligence, Networking and Parallel/Distributed Computing (SNPD05), Towson,
Maryland, USA, IEEE Computer Society, IEEE Computer Society (2005) 324–329

15. Baresi, L., Heckel, R.: Tutorial introduction to graph transformation: A software
engineering perspective. In: International Conference on Graph Transformation,
ICGT, LNCS. Volume 2505 of Lecture Notes in Computer Science., Springer (2002)
402–439

16. Habel, A.: Hyperedge replacement: grammars and languages. Volume 643 of Lec-
ture Notes in Computer Science. Springer-Verlag Inc., New York, NY, USA (1992)

17. Pratt, T.W.: Pair grammars, graph languages and string-to-graph translations.
Journal of Computer and System Sciences 5 (1971) 560–595

18. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Alge-
braic approaches to graph transformation I: Basic concepts and double pushout
approach. In Rozenberg, G., ed.: Handbook of Graph Grammars and Computing
by Graph transformation, Volume 1: Foundations. World Scientific (1997) 163–246

19. Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini,
A.: Algebraic approaches to graph transformation II: Single pushout approach
and comparison with double pushout approach. In Rozenberg, G., ed.: The Hand-
book of Graph Grammars and Computing by Graph Transformation, Volume 1:
Foundations. World Scientific (1997) 247–312

20. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundamenta Informaticae 26 (1996) 287–313

21. FUJABA: (Fujaba homepage http://www.fujaba.de/)
22. Schürr, A.: Specification of graph translators with triple graph grammars. In:

Proceedings 20th Workshop on Graph-Theoretic Concepts in Computer Science.
(1994) 151–163

23. DSTC/IBM/CBOP: Second revised submission for MOF 2.0 Query / Views /
Transformations RFP, http://www.omg.org/ docs/ad/04-01-06.pdf (2004)

24. QVT-Partners: Revised submission for MOF 2.0 Query / Views / Transformations
RFP, http://www.omg.org/docs/ ad/03-08-08.pdf (2003)

25. Jahnke, J.H.: Management of Uncertainty and Inconsistency in Database Reengi-
neering Processes, Ph.D Thesis Uni Paderborn (2002)

26. Kindler, E., Rubin, V., Wagner, R.: An Adaptable TGG Interpreter for In-Memory
Model Transformation. In Schürr, A., Zündorf, A., eds.: Proc. of the 2nd Inter-
national Fujaba Days 2004, Darmstadt, Germany, University of Paderborn (2004)
35–38

27. DSTC: Tefkat: The EMF Transformation Engine, online documentation.
(http://www.dstc.edu.au/tefkat/)

28. Merks, E., Eliersick, R., Grose, T., Budinsky, F., Steinberg, D.: The Eclipse Mod-
eling Framework. Addison Wesley (2003)

29. Königs, A., Schürr, A.: Multi-domain integration with mof and extended triple
graph grammars. In: in Proceedings of the Dagstuhl Seminar 04101, Language
Engineering for Model-Driven Software Development J. Bzivin (Univ. Nantes, FR),
R. Heckel (Univ. Paderborn, DE), Dagstuhl (2004)

30. Mens, T.: A state-of-the-art survey on software merging. IEEE Trans. Software
Eng. 28 (2002) 449–462

